Headquarters U.S. Air Force

Integrity - Service - Excellence

Phytoremediation Basics (Protocols)

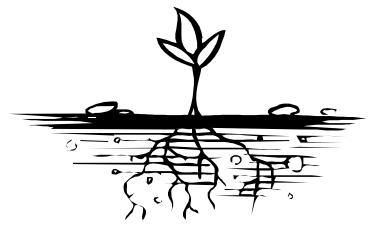
Victor L. Hauser Mitretek Systems 30 January 2001

Topics Covered

- Definitions
- Requirements for success
- Potential problems
- Advantages/disadvantages
- Examples
- Sources of information
- Summary

Phytoremediation

- Phytoremediation is the direct use of living plants for in situ remediation of contaminated soil, sludges, sediments, and groundwater through
 - Contaminant removal
 - Degradation
 - Containment



Adapted from: "U. S. EPA, 1999. *Phytoremediation Resource Guide*. Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, DC; EPA 542-B-99-003 http://www.clu-in.org/pub1.htm

Terminology

- Phyto *plant* or to grow
- Rhizo *root*, also contact with roots
- Key phrases or words
 - Direct use of living plants
 - Remediation
 - Contaminant
 - Removal
 - Degradation
 - Containment

Sub-fields of Phytoremediation*

Phytostabilization

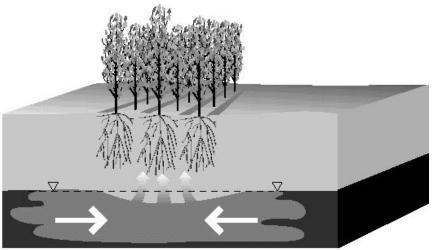
Rhizo *filtration*

Phytoextraction

Rhizo degradation

Phytodegradation

Phyto volatilization


- Vegetated landfill covers not a sub-field because
 - Cover normally does not interact with contaminants
 - Cover controls water, gas or access to waste

*Complete definition in AFCEE publication: *Draft Protocol for Controlling Contaminated Groundwater by Phytostabilization*. November 1999

Phytostabilization

- Immobilize contaminants by
 - Absorption and accumulation by roots
 - Adsorption on surface of roots
 - Precipitation of chemicals in the root zone
 - Removing groundwater in order to control groundwater movement

Phytoextraction

Also called phytoaccumulation

- Contaminants enter the plant through roots and accumulate within the plant
 - Hyperaccumulators absorb large amounts of metals or other contaminants
 - Plant material is harvested then incinerated or composted; the residue is disposed of

Rhizofiltration

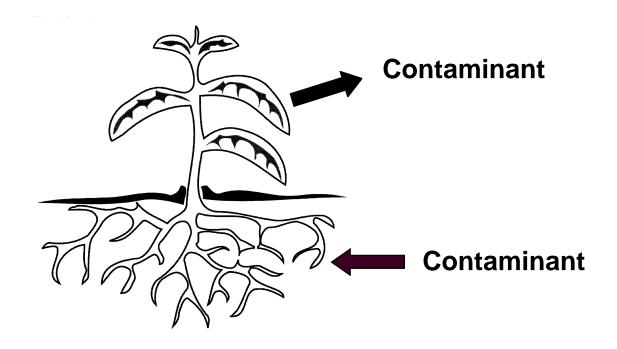
- Roots in hydroponic culture
 - Contaminated solution surrounds the roots
- Contaminant adsorbed or precipitated onto roots or absorbed into the roots
- Plant parts harvested then incinerated or composted to destroy or recycle the contaminants

Phytodegradation

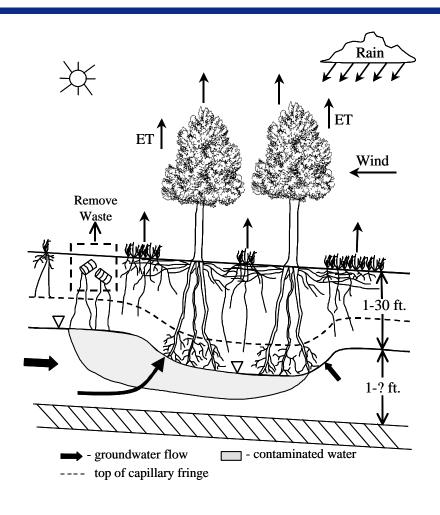
Also called phytotransformation

- Contaminants broken down by metabolic process within the plant
- Contaminants broken down (externally) by compounds (e.g., enzymes) produced by the plant
- By-products may be incorporated into plant tissue and/or used by the plant as nutrients

Rhizodegradation

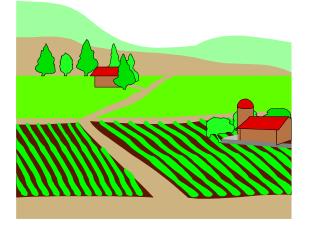

Also called enhanced rhizosphere biodegradation, phytostimulation, or plant-assisted bioremediation/degradation

- Occurs in the root zone or rhizosphere
- Natural substances released by roots
 - Sugars, alcohols, acids containing organic carbon
 - Organic carbon is food for
 - Yeast
 - Fungi
 - Bacteria
- Microorganisms degrade contaminants in addition to consuming the natural organic carbon


Phytovolatilization

- Contaminant taken up by the plant and released as vapor into the atmosphere
- Contaminant may be modified within the plant

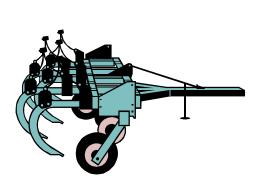
A Phytostabilization Site



Requirements for Success

- Contaminant should be near the surface
- A plant must be available that can remediate the contaminant
- The plant(s) used should be adapted to the site
- The soil should support robust plant growth
- There should be adequate space in which to grow

plants



Requirements for Success, (concluded)

- Agricultural technology, machinery for planting and harvesting, and irrigation, if required, must be adequate and available
- Remember This is a farming or forestry operation

Potential Problems

- Potential and actual evapotranspiration may be too small to support success at the site
- Industrial sites on Air Force bases often have severely compacted soils that may limit plant growth
- Successful design, planting, and implementation requires extensive knowledge of agriculture (plants, soil, machinery, pest control, etc.)
- May require institutional controls

Advantages of Phytoremediation

- Accepted by an informed public
- Potential for low cost
- May work well at low-risk sites
- May be used to complete remediation after initial cleanup to low but still unacceptable levels
- May operate with limited maintenance for decades

Disadvantages of Phytoremediation

- May require large expense for relocating operations, buildings, roads, etc. at operating bases
- Slow plant establishment may limit application
- Requires much space because solar energy drives the engine and it is a low-density energy source
- Regulators may be unfamiliar with phytoremediation
- Usually ineffective during the plant's dormant season
- May be less effective with short growing seasons

Example: Metal Hyperaccumulation

Number of suitable plants*

Metal	No. Plants	
Cadmium	1	
Cobalt	28	
Copper	37	
Lead	14	
Nickel	317	

^{*} Baker, Alan J. M. Phytoremediation presentation at conference, Omni Hotel, Houston, June 1998

Example: Remediation of Waste Pit

- One-acre waste impoundment, Houston, TX
- In use from late 1940s until early 1980s
- Disposed river silt and polycyclic aromatic hydrocarbons (PAHs)
- Natural invasion of plants 1980s to tests in 1996

Chemical	1 ft., mg/kg	2 ft., mg/kg	Sludge, mg/kg
Naphthalene	38	536	6813
Anthracene	66	113	856
Dibenzo Anthracene	0	0	5

Data by T. Wong in proceedings of Phytoremediation conference, Houston, June 1998. Remedial Technology Development Forum, US EPA

Resources

- Draft Protocol for Controlling Contaminated Groundwater by Phytostabilization – Air Force Center for Environmental Excellence (AFCEE) at http://www.afcee.brooks.af.mil/er/ert/erthome.htm
- Additional resources located on the handout page in conference proceedings.

Summary

- Phytoremediation is a promising technology
- The science, engineering, and technology needed for routine use are under development
- Some individuals have overstated the potential
- Advantages
 - Cost-effective with low maintenance costs
 - Effective against low concentrations of contaminants over large areas
 - Highly acceptable to the public
 - "Natural system"